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Abstract

A two-dimensional (2D) visual computer code to solve the steady state (SS) or transient shock problems including

partially ionizing plasma is presented. Since the flows considered are hypersonic and the resulting temperatures are

high, the plasma is partially ionized. Hence the plasma constituents are electrons, ions and neutral atoms. It is assumed

that all the above species are in thermal equilibrium, namely, that they all have the same temperature. The ionization

degree is calculated from Saha equation as a function of electron density and pressure by means of a nonlinear Newton

type root finding algorithms. The code utilizes a wave model and numerical fluctuation distribution (FD) scheme that

runs on structured or unstructured triangular meshes. This scheme is based on evaluating the mesh averaged fluctua-

tions arising from a number of waves and distributing them to the nodes of these meshes in an upwind manner. The

physical properties (directions, strengths, etc.) of these wave patterns are obtained by a new wave model: ION-A devel-

oped from the eigen-system of the flux Jacobian matrices. Since the equation of state (EOS) which is used to close up the

conservation laws includes electronic effects, it is a nonlinear function and it must be inverted by iterations to determine

the ionization degree as a function of density and temperature. For the time advancement, the scheme utilizes a multi-

stage Runge–Kutta (RK) algorithm with time steps carefully evaluated from the maximum possible propagation speed

in the solution domain. The code runs interactively with the user and allows to create different meshes to use different

initial and boundary conditions and to see changes of desired physical quantities in the form of color and vector graph-

ics. The details of the visual properties of the code has been published before (see [N. Aslan, A visual fluctuation split-

ting scheme for magneto-hydrodynamics with a new sonic fix and Euler limit, J. Comput. Phys. 197 (2004) 1–27]). The

two-dimensional nature of ION-A was presented by a planar shock wave propagating over a circular obstacle. It was

demonstrated that including the effects of ionization in calculating complex flows is important, even when they appear

initially negligible. This code can be used to accurately simulate the nonlinear time dependent evolution of neutral or

ionized plasma flows from supersonic to hypersonic regimes.
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1. Conservation laws for partially ionized plasma in thermal equilibrium

In this work, a partially ionized mono-atomic argon gas (R = 287 J/kg K) is considered. It is assumed

that the electrons and the heavy particles (i.e., the atoms and the ions) are in thermal equilibrium so that

all species share the same temperature, T. This assumption is valid for processes whose characteristic
time-scales are much larger than the characteristic time for energy transfer from the heavy particles to

the electrons, m�1
� . Furthermore, as in argon under the conditions investigated here, the characteristic time

for ionization by electron impact is equal or bigger than m�1
� (see [2]). In this case, ionization equilibrium is

assumed to be maintained and hence the ionization degree, a, may be calculated for each given density and

temperature (Saha equation) at each time. Thus, it is possible to consider the electrons and the heavy

particles as a single effective fluid with a single mass density and a single temperature. The equations that

govern the dynamic evolution of that single fluid including electronic effects are
oq
ot

þr � ½qV� ¼ 0; ð1-aÞ

oqV
ot

þr � ½qVVþ ðP þ PeÞ~I � ¼ 0; ð1-bÞ

oE
ot

þr � ½ðE þ P þ PeÞV� ¼ 0; ð1-cÞ
where ~I is the 3 · 3 unit matrix, q is the density of heavy particles, and P = qRT is their pressure, Pe = aP is

the electronic pressure, E ¼ 1=2qV 2 þ ðP þ PeÞ=ðc� 1Þ þ qaRH0
ion is the total energy (with c = 5/3 and

H0
ion ¼ �=k = 183,100 K for Ar) and a = ne/(nn + ne) is the ionization degree which is found from Saha equa-

tion (see [3]):
a2

a� 1
¼ Z; Z ¼ b0

T 3=2

q
exp �H0

ion

T e

� �
; b0 ¼ gmH

2pmek

h2

� �3=2
; ð2Þ
where Z is called, here, the ionization parameter, � is the ionization energy, me is the mass of electrons, k is

the Boltzmann constant, h is the Planck constant, and g is the twice the ion to electron ratio of the statistical

sums. Even though g depends on the temperature, it has been shown by Mond et al. [8] that g = 11 yields

correct results with high accuracy for the range of temperatures of interest (e.g., the temperatures

<10,000 K).
1.1. Dimensionless forms

In order to get the dimensionless form of these conservation equations, the following parameters are

introduced:
x0 ¼ x
x0
; t0 ¼ t

t0
; q0 ¼ q

q0

; V 0 ¼ V
V 0

; P 0 ¼ P
P 0

; P 0
e ¼

Pe

P 0

; E0 ¼ E
E0

. ð3Þ
By inserting the primed (dimensionless) quantities into Eqs. (1), dimensionless forms are obtained with the

following relationships between the normalizing parameters:
V 0 ¼
x0
t0
; E0 ¼ P 0 ¼ q0V

2
0 ¼ q0RT 0. ð4Þ
Since ionizing shocks are considered in this work, it is convenient to normalize the equations by the pre-

shock values: T0, P0 and q0 = P0RT0 whose values will be given later. In that case, the dimensionless pres-
sures and energy become (by omitting primes)
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P ¼ qT ; Pe ¼ qaT ; E ¼ 1

2
qV 2 þ P þ Pe

c� 1
þ qaHion ð5Þ
with Hion = 610.33 and Saha equation turns into
a ¼ 1

2
�Z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ 4Z

ph i
; ð6Þ
where
Z ¼ 857.6
P 3=2

q5=2
exp � qHion

P

� �
. ð7Þ
The dimensionless form of Eqs. (1) is given in 2D as
oU

ot
þ oF

ox
þ oG

oy
¼ 0; ð8Þ
where U = [q, qVx, qVy, E]
T is the conservative state vector, and F and G are the x and y components of the

fluxes respectively. This set of equations can be written in detail as follows:
o

ot

q

qV x

qV y

E

2
6664

3
7775þ o

ox

qV x

qV xV x þ P þ Pe

qV xV y

ðE þ P þ PeÞV x

2
6664

3
7775þ o

oy

qV y

qV yV x

qV yV y þ P þ Pe

ðE þ P þ PeÞV y

2
6664

3
7775 ¼ 0. ð9Þ
2. Numerical scheme and wave model

In order to solve the conservative form of the partially ionized plasma equations, the solution domain is

divided into structured or unstructured triangles, as shown in Fig. 1. Thus Eq. (8) is integrated over the

triangles and the solutions are obtained on their nodes. The resulting scheme is given by
Z
T

Unþ1 �Un

Dt
dS ¼ UT ¼ �

Z
ST

r �~FdS ¼ �
Z
ST

ðFx þGyÞdS; ð10Þ
where ~F ¼ ðF;GÞ and Dt is the time step which satisfies the CFL condition according to the fastest wave in

the system. In addition, UT is the flux divergence and is named the total fluctuation, i.e., the sum of the
Fig. 1. The mesh structure. The nodes of triangle, T, are i, j, k and Si is the median dual cell area surrounding node i.
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individual wave fluctuations as a function of eigenvalues, eigenvectors and strengths of the possible waves

in the wave pattern of the system.

2.1. The wave model: ION-A

In order to solve above system of equations, a new wave model (called ION-A) is constructed. To

describe the derivation of ION-A and the underlying numerical solution technique, Eq. (8) is written in

primitive form given by
oW

ot
þ A

oW

ox
þ B

oW

oy
¼ 0; ð11Þ
where W = [q, Vx, Vy, P]
T is the primitive state vector and A and B are primitive Jacobian matrices. The

eigenvalues of this system are the same as those of conservative one and their eigenvectors can easily be

transformed into the conservative ones by means of Uw = oU/oW, the conservative to primitive state Jaco-

bian matrix. The primitive equations (in detail) used in the derivation of ION-A are
oW

ot
þ

V x q 0 0
aqP
q V x 0 b

q

0 0 V x 0

0 W 0 V x

2
6664

3
7775
oW

ox
þ

V y q 0 0

0 V y 0 0
aqP
q 0 V y

b
q

0 W 0 V y

2
6664

3
7775
oW

oy
¼ 0; ð12Þ
where aP ¼ oa
oP ¼ �f ½3=ð2P Þ þ qHion=P 2�; aq ¼ oa

oq ¼ �f ½5=ð2P Þ þ Hion=P � and f ¼ Z=2 �
ffiffiffi
Z

p
=2ðZ þ 2Þ=ffiffiffiffiffiffiffiffiffiffiffiffi

Z þ 4
p

, b = 1 + a + PaP and W = cPfe where
fe ¼
1þ PaP þ 2=5qaqð1�Hion=T eÞ

bþ 2=3qHionaP
ð13Þ
for c = 5/3. Notice that, when electronic effects are neglectedW vanishes (i.e., a ! 0, aP, aq ! 0, and fe ! 0)

so that Eq. (12) turn into Euler equations.

Eqs. (12) are hyperbolic in nature and their eigen-system displays a wave character. To determine the

wave solution, it is assumed that W = W(v) where v ¼~x �~nh � kht is the phase of the wave front that moves

in the direction of~nh. Note that different waves are allowed to propagate in different directions, i.e.,~nkh for
wave, k. Inserting this into Eq. (11) results in
½�khI þ Anx þ Bny �
oW

ov
¼ 0; ð14Þ
where nx and ny are x and y components of~nh. It is clear from this equation that, khI is 4 · 4 diagonal matrix

of the eigenvalues of An = Anx + Bny and oW/ov is its eigenvector (note that it is An from which the wave

model: ION-A presented here is developed). Thus, the gradient (i.e., x and y derivatives) of W may be writ-
ten in terms of the right eigenvectors of An as
rW ¼
XN
k¼1

akrkw~n
k
h; ð15Þ
where the coefficient ak is the strength of the kth wave and rkw is its right eigenvector. This equation results in

the change in conservative state as
rU ¼
XN
k¼1

akrku~n
k
h; ð16Þ
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where N is the total number of waves and as stated before, rku ¼ rkwUw can be used to obtain conservative

right eigenvectors from the primitive ones. Thus, the change in conservative fluxes (i.e., the fluctuation

defined in Eq. (10) becomes
UT ¼ �
Z
ST

r �~FdS ¼
X
k

DT
kUk; ð17Þ
and the update of the solution at the node i of T, given by Eq. (10), turns into
Unþ1
i ¼ Un

i þ
Dt
Si

X
T2i

X
k

DT
kUk; ð18Þ
where
Uk ¼ �STkkakrku ð19Þ

is the wave fluctuation and DT

k is the matrix of distribution parameters satisfying Di + Dj + Dk = I where i, j,
k are the nodes of triangle T, see Fig. 1. Note that the directions of the waves determine the form of these

distribution parameters. If the direction is towards the node i, then Di = I while Dj = Dk = 0, this is called

one node update since only the state at this node is updated. When the direction is towards two nodes, say

i, j then Dk = 0 and Di and Dj must be carefully selected. Ref. [4] explains in detail how this is done.

From Eq. (12) it is evident that the matrix An is given as
An ¼

V n qnx qny 0

aqP=qnx V n 0 b=qnx
aqP=qny 0 V n b=qny

0 Wnx Wny V n

2
6664

3
7775; ð20Þ
where now
W ¼ cP ð1þ a� 3=5qaqð1þ z=3ÞÞ
1þ aþ PaP ð1þ z=3Þ ð21Þ
with z = 2Hion/Te and again c = 5/3. The eigenvalues of this matrix are
K ¼ V n; V n; V n � a; V n þ a; ð22Þ

where V n ¼ nxV x þ nyV y ¼ cos hV x þ sin hV y and a is the generalized sound speed given by
a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bW=qþ Paq

q
. ð23Þ
The first two waves denote the entropy and entropy-vortex waves while the last two represent backward

and forward acoustic waves. Note that, as the electronic contributions are neglected (i.e., a ! 0, aP, aq ! 0

so that W ! cP), this sound speed approaches, a ¼ a0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
cP=q

p
, the classical sound speed.

The right eigenvectors of An that is given by Eq. (20) are given by the following matrix:
Rw ¼

1 0 q=A q=A

0 �ny �nx nx
0 nx �ny ny

�Paq=b 0 W=A W=A

2
6664

3
7775; ð24Þ
where the columns of Rw represent, entropy, entropy-vortex, backward and forward acoustic waves respec-

tively. The wave-strengths of these waves are found by solving Eq. (15) for ak provided that the x�y deriv-

atives of W are known on the triangle. Since Eq. (15) provides a total of 8 derivatives, it is made of 8
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equations. Unfortunately, assuming 4 waves with 4 different propagation angles (this is the ideal case for

minimum numerical dissipation) requires the solution of nonlinear equations. In order to handle this prob-

lem, the number of propagation angles is reduced and the number of waves is increased. This extra dissi-

pation causes a spread of the discontinuities and shocks but the system of equations to be solved becomes

relatively easy. Using this idea (see [4]), Eq. (15) with 6 waves is written as
ðWx;WyÞ ¼ a1rw1ðcos he; sin heÞ þ a2rw2ðcos h; sin hÞ þ
X4

s¼3

asrwsðcos h; sin hÞ þ
X6

s¼5

asr0wsðcos h
0; sin h0Þ;

ð25Þ

where the first two waves are entropy and entropy-vortex, waves and others are acoustic waves. he is the
propagation angle of the entropy wave and h (and h 0 = h + p/2) is the propagation angles of the other

waves. As seen, having 6 strengths and 2 different angles leads to 8 unknowns and one has a consistent

set of equations. Note that r0ws are the eigenvectors of the additional two waves propagating in perpendic-

ular to the original acoustic waves and they can be found by interchanging h by h + p/2 in Eq. (24). These

wave-strengths and wave propagation angles are given by
a1 ¼
a20
A2

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

e þ Y 2
e

q
; he ¼ tan�1ðY e=X eÞ; ð26Þ

a2 ¼ V y;x � V x;y ; h ¼ 1

2
tan�1 V x;y þ V y;x

V x;x � V y;y

� �
; ð27Þ

a3;4 ¼ 1

2
� 1

2
ðr � Vþ DÞ þ 1

qA
rPT �~nh

� �
; ð28Þ

a5;6 ¼ 1

2
� 1

2
ðr � V� DÞ þ 1

qA
rPT �~n0h

� �
; ð29Þ
where
X e ¼ fqx �
Px

a20
; Y e ¼ fqy �

Py

a20
; f ¼ 1þ PaP þ 2qaq=5PðP � qHionÞ

bþ 2=3qHionaPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

and D ¼ ðV x;y þ V y;xÞ2 þ ðV x;x � V y;yÞ2, PT = P + Pe being the total pressure. Note that in the above equa-

tions, the second subscripts denote derivatives.
2.2. Initial conditions

As a test-case for the numerical scheme presented above, the stability of hypersonic and ionizing shock
waves is examined. To do that, a rectangular region is divided into 2 domains and an initial stationary

shock solution (obtained from the Rankine–Hugoniot relations in the reference frame of moving shock)

is given as the initial condition. The problem is then run for very long times in order to check whether

the scheme keeps the locations and the strengths of the initial shock unchanged. The shock stability is also

investigated by perturbing the shock front by small amplitude waves moving towards the shock at different

angles.

Thus, it is assumed that a hypersonic shock moves, in the positive x-direction, into a stationary (V = 0)

and not ionized region characterized by the physical quantities defined as pre-shock values: T0 = 300 K,
P0 = 5 Torr = 666.5 Pa (thus q0 = P0/T0 = 0.00774 kg/m3 and the constant b0 in Eq. (7) becomes

b0 = 857.6). Since no pre-shock ionization is considered (i.e., a = 0 and Pe0 = 0) this region satisfies the

Euler equations for ideal and non-viscous gas. The region behind the shock includes a partially ionized

subsonic gas which should be investigated by high temperature gas dynamics including electronic effects.



N. Aslan, M. Mond / Journal of Computational Physics 210 (2005) 401–420 407
The code presented here automatically handles the cases in which ionization is not negligible. The electronic

effects are included in the equation of state through Saha equation which is used to calculate the ionization

degree, a.

2.3. Rankine–Hugoniot conditions

The Rankine–Hogoniot (RH) conditions are formulated in a frame of reference in which the shock is

stationary. These conditions can be obtained by equating the conservative fluxes on both sides of the sta-

tionary shock:
Fig. 2.

temper
qV 0
n

qV 0
nV

0
n þ P þ Pe

qV 0
nV

0
?

ðE þ P þ PeÞV 0
n

2
6664

3
7775

left

¼

qV 0
n

qV 0
nV

0
n þ P þ Pe

qV 0
nV

0
?

ðE þ P þ PeÞV 0
n

2
6664

3
7775

right

; ð30Þ
where V 0
n ¼ V x � V x;shock is the velocity normal to the shock surface and V 0

? ¼ V y � V y;shock is the tangential

velocity along the shock surface (note that the primed velocities are those in shock�s reference frame and

Vshock is the shock velocity. When the shock motion is in +x direction (i.e., Vy,shock = 0) into a non-ionizing

region on the right, one has the typical behaviour in the laboratory frame and shock frame as shown in Fig. 2.

In order to derive the RH relations (or shock adiabatic) between the initial right and left state around the

stationary shock surface, the following dimensionless physical quantities are defined:
g ¼ qL

q0

; P ¼ PL þ PeL

P 0

; H ¼ T L

T 0

; ð31Þ
where g is the density ratio while P and H are total pressure and temperature ratios respectively. Using
these definitions, the shock speed can be found as
V shock ¼
P 0

q0

g
g� 1

ðP � 1Þ
� �1

2

; ð32Þ
and the RH conditions turn into the following relations between the density, pressure, and temperature

ratios:
g ¼ 1þ 4P
4þ P � 2aHion=T 0

; P ¼ ð1þ aÞgH; a ¼ 1

2
�Z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ 4Z

ph i
; ð33Þ
where Z ¼ b0 H3=2

g

� �
exp � Hion

H

� 	
. The values q0 = 1, T0 = 1, P0 = 1, a = 0, Pe = 0 were taken as the state val-

ues for the stationary region on the right, and for each given value of temperature ratio,H, the implicit Eqs.
(33) and (32) were solved numerically in order to obtain the corresponding other quantities (i.e., g and H).
a

b

(a) The hypersonic shock front moving right into the non-ionized region leaving behind a partially ionized region with high

atures (initial RH conditions); (b) what happens in shock�s reference frame.



0 500 1000 1500 2000
0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100
0

200
400
600
800

1000
1200
1400
1600
1800
2000

P

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Vshock

Pa b

c dTheta

Theta

Theta

Eta Eta

*
*A

B

Fig. 3. The initial RH solutions among the density, pressure, and temperature jump (i.e., g, P, H). The shock adiabatic is given by (a).

408 N. Aslan, M. Mond / Journal of Computational Physics 210 (2005) 401–420
Fig. 3 shows the resulting relationships among the density, pressure, and temperature jumps obtained by

this procedure (note that the shock adiabatic is given by Fig. 3(a) and it is the same as that given in [2]).

The dotted lines in the first two graphs correspond to classical gas dynamic case and points A and B cor-
respond to the two sample test-cases considered in this work.
3. Numerical solution procedure

Recently, many journal articles describing multi-dimensional upwinded solvers for both the Euler equa-

tions and the MHD equations have been generated, see [10–14]. Although, the finite volume (FV) formu-

lations are the schemes [10] widely used for the numerical methods, the fluctuation splitting (FS) schemes
[11] have also been used successfully. The FS schemes differ from the FV schemes in the sense that the flow

variables are not mesh averages but are kept at the vertices of the mesh and that the numerical fluxes are not

used. See [15] for a comparison between the FS and FV schemes.

In the FS scheme developed here, the conservative state is solved on structured or unstructured triangu-

lar meshes by utilizing the new wave model: ION-A. Note that several wave models have been developed

for the Euler equations [5] and for the MHD equations [1,4]. As done with other wave models, ION-A is

utilized to calculate the individual fluctuations of possible waves, by first determining their effects due to the

gradients in the physical variables, and then distributing them to the nodes of triangles in an upwind man-
ner. As it was explained earlier, the time rate of the conservative state given by Eq. (10) turns into Eq. (18)

as a function of the eigen-system of conservative Jacobian matrices. This eigen-system (evaluated in each
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triangle, T) requires the values of mesh averaged primitive variables, and their gradients. The area integral

of the Jacobian matrices is very complicated due to the fact that their elements are nonlinearly dependent

on the primitive state, W. In order to circumvent this difficulty, another state vector, Z (parameter state) is

introduced with the requirement that it varies linearly in T and the elements of U, W, F, and G are qua-

dratic in the components of Z. In that case oU/oZ, oW/oZ, oF/oZ, and oG/oZ, are linear in Z, thus their
surface integrations may be evaluated by the average parameter vector, Z, see [5] for similar Eulerian

models.
3.1. Solution algorithm

For each triangle, T:

1. find q, Vx, Vy, P from the conservative state vector by employing a Newton type algorithm for pressure
and obtain Z ¼ ½ ffiffiffi

q
p

;
ffiffiffi
q

p
V x;

ffiffiffi
q

p
V y ;

ffiffiffi
q

p
HT�T, the parameter state, for each node i of T,

2. using 3 nodal values of T, find the mesh averaged parameter vector, and its gradient from
Z ¼ 1

3

X3

m¼1

Zm; rZ ¼ 1

2ST

X3

m¼1

~nmZm; ð34Þ
3. using the matrix: oW/oZ determine the average primitive state given as W ¼ ½q; V x; V y ; P �T with a New-
ton type algorithm for average pressure,

4. obtain the x and y derivatives of W noting the fact that an implicit equation is to be inverted to get Px

and Py (since a = f(q, P)),
5. using these averages, evaluate Z; a; aq; aP ;W; b and get the averaged sound speed a from Eq. (23),

6. find the eigenvalues from Eq. (22), the propagation angles he and h from Eqs. (26) and (27) and obtain

the wave-strengths from Eqs. (26)–(29); then get the right primitive eigenvectors, rw from Eq. (24), and

the conservative eigenvectors, ru using the matrix: oU/oW,

7. having determined the eigen-system of 6 individual waves for each wave, k
7.1. get the wave fluctuation from Eq. (19) using the averaged values: kk; ak and rku,
7.2. using the mesh properties and~nðhÞ ¼ ðcos h; sin hÞ, determine the upwind nodes for this wave and

assign Uk to these nodes of T using the distribution technique described in [1] or [5].

After the contributions of each wave k are obtained at the nodes of the triangles and all the triangles

around nodes are visited, the nodal mesh updates will have been completed and the nodal values will have

reached their values at the new time step, n + 1, see Eq. (18).

In this work, the time update given by Eq. (18) was carried out by third order Runge–Kutta (RK)
method for improved time accuracy of the scheme. This third order accurate RK method which is positive

and oscillation free is given by [9]
U1 ¼ Un þ DtResðUnÞ;

U2 ¼ 3Un þU1

4
þ Dt

4
ResðU1Þ;

Unþ1 ¼ Un þ 2U2

3
þ 2Dt

3
ResðU2Þ.

ð35Þ
Before turning to the numerical results few comments on the numerical procedure are due:
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3.2. Newton iterations for equation of state

Since, the primitive variables: W = [q, Vx, Vy, P]
T are used to obtain the eigen-system, they must be cal-

culated correctly from the conservative variables: U = [q, qVx, qVy, E]
T at each time iteration. It is easy to

get the velocities from the density and momenta. When classical gas dynamics is considered the pressure
may be calculated explicitly from the equation of state and the expression for the internal energy. However,

in the case presented here, the total energy is a nonlinear function of pressure, as is clearly seen in Eqs. (5)

and (6). Hence both the pressure as well as the ionization degree must be obtained simultaneously by

employing a root solver algorithm (such as Newton�s) provided that the density, velocity, and total energy

are known. Since Pe = qaT, the total energy can be written as
E ¼ 1

2
qV2 þ qT ð1þ aÞ

c� 1
þ qaHion; ð36Þ
where a is given by Eq. (6) and Z is given by Eq. (7). Thus for given E, q, and V, the function whose root is

sought is
F ¼ E � qaHion þ ð1þ aÞ P
c� 1

þ 1

2
qV 2

� �
. ð37Þ
Newton�s algorithm is then is given by
Pkþ1 ¼ Pk � F k

F 0 ; ð38Þ
where �k� is the iteration level and
F 0 ¼ � 1þ ak

c� 1
� Pk

c� 1
þ qHion

� �
akP ; ð39Þ
where F 0 and aP are the derivatives of F and a with respect to P respectively. As known, Newton�s method is

generally guaranteed to converge if the initial guess is sufficiently close to the solution. If the initial guess,

P0, is obtained from the previous time step, Pk+1 approaches correct pressure as iterations converge within

a prescribed tolerance.

3.3. Newton iterations for averages

The parameter state for this work was chosen to be
Z ¼ ½Z1; Z2; Z3; Z4�T ¼ ½ ffiffiffi
q

p
;

ffiffiffi
q

p
V x;

ffiffiffi
q

p
V y ;

ffiffiffi
q

p
HT�T; ð40Þ
where HT = (E + P + Pe)/q is the total enthalpy. If is given by the same as Eq. (40) (with elements are aver-

aged) one can get q and V from q ¼ Z
2

1; V x;y ¼ Z2;3=Z1; and HT ¼ Z4=Z1. Note that to get P from Z, one

must follow similar root finding procedure that was described before. To do that the iteration given by Eq.

(38) is used with
F k ¼ c
c� 1

ð1þ akÞPk � qHT þ ðqakHion þ qV
2
=2Þ ð41Þ
and
F 0 ¼ c
c� 1

ð1þ akÞ þ
c

c� 1
Pk þ qHion

� �
akP . ð42Þ
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As iterations converge, the average pressure (and hence average a) is obtained. This procedure is followed
for each visited triangle, T in which the individual fluctuations are calculated and distributed to its nodes.

3.4. Gradients of physical variables

The gradients of the physical variables in �T� are obtained by using
Fig. 4
ðqÞx;y ¼ 2Z1ðZ1Þx;y ; ðV xÞx;y ¼ ðZ2Þx;y=Z1 � Z2=Z
2

1ðZ1Þx;y ;

ðV yÞx;y ¼ ðZ3Þx;y=Z1 � Z3=Z
2

1ðZ1Þx;y ; ðPÞx;y ¼
X4

j¼1

T jðZjÞx;y ð43Þ
where
T 1 ¼ ð1þ aÞ½Z4 � 2Z1ðaHion þ faP Þ�; T 2;3 ¼ �c0ð1þ aÞ=½1þ c0ð1þ aÞfaP �Z2;3 and

T 4 ¼ c0ð1þ aÞ=½1þ c0ð1þ aÞfaP �Z1
where c 0 = (c � 1)/c and f ¼ qHion þ ðqHT � V
2
=2� qaHionÞ=ð1þ aÞ. Notice that, T1–T4 are obtained from

the elements of the matrix: oW/oZ provided that a = a(q, P) being nonlinearly dependent on q and P. In

addition, the gradient of electron temperature can be calculated from: ðT eÞx;y ¼ ðP Þx;y=q� P=q2ðqÞx; y.
4. Numerical results

4.1. Sod’s shock tube test (c = 1.4)

This purely hydrodynamic test introduced in [6] involves a left moving fast rarefaction (FR�), a right

moving contact discontinuity (CD+) and a fast shock (FS+) ahead of it. The initial data (with no ioniza-

tion, i.e, a = 0) was chosen asWL = [1, 0, 0, 1],WR = [0.125, 0, 0.1] and the problem was run until t = 0.1 on
a highly elongated mesh with boundaries x, y 2 [0, 1]. The resulting density profiles in x direction (at

y = 0.5) as a function of different mesh sizes (100, 200, 800, 1600 · 3) are shown in Fig. 4(a). As seen from

this convergence study, the solution shows no post shock oscillations and the contact and shock get sharper

as the mesh resolution is increased. In Fig. 4(b), the resulting density and pressure profiles are presented
0.45 0.5 0.55 0.6 0.65 0.7
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100
200
800

1600

Density, Sod's shock tube test

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

Pressure

Density

Sod's shock tube test

a br at different meshes r and P on 1600×3 mesh

. Sod�s shock tube test at t = 0.1, on 100, 200, 800, 1600 · 3 R-grid, c = 1.4. Plots show FR�, CD+, FS+ from left to right.



412 N. Aslan, M. Mond / Journal of Computational Physics 210 (2005) 401–420
obtained at t = 0.1 on the 1600 · 3 mesh. These results agree well with those presented in [6] showing that

model ION-A reduces to the correct 1D limit as ionization degree vanishes (i.e., no electrons exist in the

medium). No numerical efforts were taken to set ionization degree and Vy to zero, although some negligible

errors for these fields were observed near the shock and contact. In addition, for the coarser meshes, the

shock seems to be slightly smeared right-biased. This issue should further be studied. Note also that these
errors get smaller as the mesh is made finer.

4.2. Supersonic channel flow (Euler limit)

This test problem was chosen to check if the code presented here produces (automatically without

employing some controlling parameters) regular gas dynamics (Euler) limit when the ionization degree is

negligible. To show this, a supersonic channel flow is solved on a rectangular mesh which has a smoothly

varying backward step (i.e. the bottom wall has a sine square profile: y(x) = 0.2 sin2[p(2 � x)/4] for x < 2
else y = 0). This test problem was considered in [7] for the solutions of Euler�s equations. The domain con-

sidered is x 2 [0, 6], y 2 [0, 1], and a typical mesh is shown in Fig. 5. A uniform supersonic horizontal inflow

into the non-ionized region is imposed at the x = 0 boundary with
vx ¼ 2
ffiffiffi
c

p
; vy ¼ 0; q ¼ 1; P ¼ 1; c ¼ 5=3.
The inflow Mach numbers is thus M = 2 so that the inflow is supersonic. At the bottom and top boundaries

the ideal wall symmetry conditions are imposed by just modifying the velocity at this boundary such that its

normal component vanishes. The fluid is allowed to flow out freely at x = 6, where the flow is supersonic.
The resulting steady state density and Mach number color graphs in Fig. 6 as a function of different

grids. The grids considered for this test were 71 · 11, 141 · 21, and 281 · 41 and a typical mesh is shown

in Fig. 5. The solutions agree very well with those given in [7] and, as seen from the color graphs, the solu-

tion converges and the shocks become sharper as the grid is made finer.

As a convergence study, the density profiles at y = 0.3 and y = 0.7 are presented in Fig. 7 as a function of

x and different grid resolutions. As seen from this figure, the solutions converge to correct solutions as the

solution mesh is made finer. In addition, one can see from the density graphs at y = 0.7, the reflected shock

from the upper boundary is as sharp as the incoming one, resolving the shocks within 4–6 points. These
results show that the code presented here successfully converges to correct Euler limit when the ionization

is negligible, i.e., a ! 0.

4.3. Stationary ionizing shock

In this test problem, it is assumed that a hypersonic ionizing shock moves right in a non-ionized region

(i.e., a = 0, q = P = T = 1) leaving behind an ionized region with very high temperature and density. The
Fig. 5. A typical right running diagonal mesh used for supersonic channel flow test.



Fig. 6. Density and mach number color graph (on 77 · 11, 141 · 21, and 281 · 41 mesh.
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Fig. 7. The density x-profile at y = 0.3 and y = 0.7 for three different meshes: 71 · 11, 141 · 21, and 281 · 41.
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temperature jump (i.e., H) was chosen to be 30 (point A in Fig. 3(b)) and corresponding values of density,

pressure, and x velocity jumps were determined from the shock adiabatic given by Fig. 3. It is worthwhile to

note that the Mach number for this case was 9.92. The resulting left state was found as: qL = 4.158,

PL = 124.764, and VxL = 9.729 with a shock speed of 12.810 and ionization degree of a = 0.00701. In order

to obtain a stationary shock, the x velocities on both sides of initial discontinuity were changed to

VxR = �12.810 and VxL = 9.729 � 12.810 = �3.081, see Fig. 2(b). This problem was run for more that

30,000 time steps on highly elongated isotropic triangular mesh with free (outgoing) left and right bound-

aries. The density profile obtained initially and after 30,000 time steps on the 100 · 3 mesh are shown in Fig.
8 as a function of x. As seen, the shock remains stationary even after so many iterations. The log of L2

norm of the solutions until 10,000 time steps are shown in Fig. 9 for 100 · 3 and 1000 · 3 meshes. As seen,

the error in the solutions reduce as the mesh is made finer and it remains within the same range after so

many time steps. This behaviour repeats itself even after 30,000 time steps. The second test includes a stron-

ger shock with a temperature jump of H = 40 (point B in Fig. 3(b)) so that the Mach number is 13.97.

According to the Hugoniot curves given in Fig. 3, this corresponds to a density jump of 6.33, a value that

cannot be achieved by classical gas dynamics. Fig. 10(a) gives the resulting density profiles obtained at very

early time and after 30,000 time steps on the same 100 · 3 mesh. As seen, the shock location remains un-
changed as before but there is a slight increase in the density (i.e., g = 6.5 peaking at g = 6.6 instead of 6.33).
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The reason of having unchanged shock location shows that the sound speed were calculated correctly in the

code and RH conditions are satisfied reasonably. But the slight overshoot in the density (and hence in a,
etc.) results from numerical errors in the gradient and propagation angles. Fig. 10(b) gives the residual

as a function of time. As seen the residual gets very small and remains constant at nearly 10�7 after

t = 5. Fig. 11 shows the resulting density profile obtained on the 1000 · 3 mesh for H = 40 case. In this case,
the peak value of the density near the shock surface has dropped to 6.48 thus producing a better solution.

This shows that as the grid is made finer, the errors arising from numerical errors in the gradient calcula-

tions get smaller, although the reduction is rather slow. This can be improved by employing higher order

gradient calculations considering neighbor meshes.

4.4. Perturbed ionizing shocks

In this section, the stationary shock is perturbed at t = 0 in the following way:
f 0 ¼ f ð1þ � sin ax cos byÞ; ð44Þ

where f stands for the unperturbed physical variables (pressure, velocity, density) while f 0 denote their per-

turbed values. The problem was run for 17,611 steps for � = 0.1, a = 6/5p, b = 36p, until t = 11.48. The

resulting residual is presented on Fig. 12. As seen the residual remains extremely small for very long times,

showing that the numerical scheme preserve the steady shock successfully. How the density and ionization
degree change in time when the shock surface is perturbed are presented in Figs. 13 and 14 as color pictures.

The density profiles at different times are plotted at the centerline (i.e., at y = 0.5) as a function of x on

Fig. 15. As seen from these figures, initial perturbation turns into parallel train of waves with different
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Fig. 11. The density profile obtained initially and after 30,000 time steps on 1000 · 3 mesh for H = 40.
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Fig. 12. The residual for perturbed shock surface on 200 · 10 mesh for H = 30 case.



Fig. 13. Time evolution of perturbed shock on 200 · 10 mesh for H = 30. Left and right columns show the density and ionization

degree color graphs.
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wavelength and strength which move towards the stationary shock at the center. Each perturbation wave

creates their own effect on the shock and continue moving behind the shock. When the ionization values are

examined one can see that the perturbation waves cause the ionization degree to increase behind the shock.

Another noticeable effect is that the last perturbation wave which hit the shock surface at nearly t = 5 cre-

ates biggest perturbation and a pulse created in the ionization degree is forced to move in the ionized region

behind the shock. This last perturbation reaches to the left boundary at nearly t = 3 and the shock surface

reaches to steady state and remains at correct location and strength for very long times.



Fig. 14. Time evolution of perturbed shock on 200 · 10 mesh for H = 30. Left and right columns show the density and ionization

degree color graphs.
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Fig. 15. Density profiles (as a function of x) for perturbation magnitude = 0.1 on 200 · 10 mesh for H = 30 case.
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Fig. 16. The unstructured mesh with 2878 nodes and 5536 triangles used for the planar ionizing shock test and the initial location of

ionizing shock approaching the circular obstacle from the left.
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4.5. Interaction of a planar shock wave with a circular obstacle

In order to demonstrate the two-dimensional nature of ION-A, the flow that develops behind a planar

shock wave propagating over a circular obstacle is examined in a rectangular region including a circular

obstacle, see Fig. 16. As shown in Fig. 17, a planar shock wave propagates into an unperturbed cold

gas that contains the circular obstacle. The temperature jump across the unperturbed shock is h = 30

and the corresponding values of the jumps in rest of the physical variables are given in Section 4.3. In

Fig. 18 the shock is seen interacting with the obstacle while in Fig. 19 it is already moving to the right away
from the obstacle. This sequence of three snapshots clearly indicates the robust stability of the shock. It
Fig. 17. Planar ionizing shock (with H = 30) approaching the circular obstacle obtained on the mesh shown in Fig. 16.



Fig. 18. Planar ionizing shock (with H = 30) interacting with the circular obstacle obtained on the mesh shown in Fig. 16.

Fig. 19. Planar ionizing shock (with H = 30) moving away the circular obstacle obtained on the mesh shown in Fig. 16.
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survives the strong perturbation due to the obstacle and resumes its original planar shape and character-

istics far away from the latter, thus extending the theoretical prediction of linear stability [2] observed in

Section 4.4, into the nonlinear regime. In addition, it is seen that a bow shock is forming in front of the

obstacle. Indeed, for high enough Mach numbers the flow behind the shock is supersonic in the laboratory

frame. Furthermore, the Mach number behind the shock (defined by the flow velocity in the laboratory

frame) when ionizations are taken into account is bigger than its classical gas-dynamical counterpart,

due to the drop in the downstream temperature. As a result, a bow shock is indeed expected due to the

steady supersonic flow over the circular obstacle. It is interesting to notice that a further increase in the den-
sity occurs behind the bow shock, i.e., between the bow shock and the circular obstacle. Whereas the initial

density jump is 4.16, the density in areas adjacent to the bow shock can rise as high as 10 times the upstream

density. Even more striking is the behavior of the ionization degree. The initial downstream ionization is

0.7% and one might be tempted to neglect effects of ionization all together throughout the entire flow.

However, due to the rise in temperature behind the bow shock and due to the decrease of the density next

to the obstacle, high ionization areas are formed with ionization degrees as high as 10% or more. This
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demonstrates the importance of including the effects of ionization in calculating complex flows even when

they appear initially unimportant.
5. Conclusion

A new wave model and numerical solution algorithm for the solutions of ionized gas (in thermal equi-

librium) is presented along with its visual properties. The numerical scheme is based on evaluating mesh

fluctuations for the solved variables and distributing them to the nodes of these meshes by an upwinding

strategy. The numerical technique of solving the nonlinear equation of state (including electronic effects)

by means of Newton type root finding algorithm is presented along with the main solution algorithm.

The accuracy study and correct Euler limit (when ionization is negligible) are presented and compared

to previously published results. The stability of a stationary hypersonic shock which separates non-ionized
and partially ionized regions case is presented. It was shown (by a shock and obstacle interaction) that the

effects of ionization in calculating complex flows should be included even when they appear initially neg-

ligible. The code is currently being modified to include the case when the heavy particles (ions and neutrals)

have different temperatures than electrons.
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